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Outline

Motivations

Definition of Algebra

R-vector and Multivectors

The Clifford Product

The Clifford Algebra

Maxwell and Hamilton Equations

New construction of Clifford Algebra

Relation of Clifford Algebra an the Exterior Algebra

Quantization in mathematics

Geometric Quantization and Noncommutative geometry

Final Remarks



XII Taller de la División de Gravitación y F́ısica Matemáticas. Noviembre 4-8, 2019

Motivations

The main motivation for this short talk is to give a survey on the mathematical
treatment of quantization and the notion mathematicians have about this topic. Of
course, this subject comes from physics where quantization has a physical meaning,
it’s the change in behavior particles have when we study subatomic scales and how the
theory has to being adequated to fit the experimental results.
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Algebra

Remember the definition of an algebra

Definition

A vector space V equipped with a product is called an Algebra.
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r-vectors

The usual geometric interpretation of vectors as arrows give us the intuition to
abstract and generalize this notion. So, a vector space V of dimV = 1 contain at most
1-vectors, one of dimV = 2 contain 2-vectors but also 1-vectors. With this in mind,
we can regard scalars as 0-vectors and interpret them as points, 1-vectors as directed
arrows and 2-vectors as directed planes. Then 3-vectors are directed volumes and an
r-vector is a directed hypersurface. Let us write r-vectors as Ar and call it of grade r .
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Multivectors

Now we can define

Definition

A multivector A is the finite sum of r-vectors
A = A0 + A1 + A2 + · · ·+ Ar

This new object result to have interesting features. At first it could seem ill defined,
since is the sum of objects of different dimension. The notion relies in the concept of
r-vector which, in fact, is not new; directed surfaces are classically constructed as the
result of operation between usual vectors, here we defined them as pure objects
contained on a space of greater dimension. Additionally, since sum between r-vector is
well defined, also is the sum with multivectors. Do not forget that r-vectors are still
elements of the vector space V. Actually, we can prove that multivectors form a vector
space.
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Multivectors

Now we can define

Definition

A multivector A is the finite sum of r-vectors
A = A0 + A1 + A2 + · · ·+ Ar

This new object result to have interesting features. At first it could seem ill defined,
since is the sum of objects of different dimension. The notion relies in the concept of
r-vector which, in fact, is not new; directed surfaces are classically constructed as the
result of operation between usual vectors, here we defined them as pure objects
contained on a space of greater dimension. Additionally, since sum between r-vector is
well defined, also is the sum with multivectors. Do not forget that r-vectors are still
elements of the vector space V. Actually, we can prove that multivectors form a vector
space.



XII Taller de la División de Gravitación y F́ısica Matemáticas. Noviembre 4-8, 2019

Figure: Geometric interpretation of a multivector
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Now, saving time, let me show you this definitions to arise the Geometric Product AB
of multivectors and rise up the Clifford Algebra.

Definition

〈A〉r := Ar

This is notation for the r-vector part of A. It let us writes A as A =
n∑

r=1

〈A〉r .

Definition

Ar · Br := 〈ArBr 〉|r−s| Inner product

Ar ∧ Br := 〈ArBr 〉|r+s| Exterior product

In this sense, inner product is an operation that decrease the grade of a r-vector and
exterior product increase it. Note that this definitions recovers the usual sense when
dealing with ordinary vectors (1-vectors).
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For basis vectors
eiei = e2

i = 1

In order to calculate eiej for i 6= j let us do

(ei + ej )(ei + ej ) = eiei + eiej + ejei + ejej

(ei + ej )
2 = 2 + eiej + ejei

(ei + ej ) · (ei + ej ) = 2 + eiej + ejei

ei · ei + ei · ej + ej · ei + ej · ej = 2 + eiej + ejei

2 = 2 + eiej + ejei

⇒ eiej = −ejei (1)
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Now, to facilitate calculus, we express the geometric product of two vectors in C(V )
with dimV = 2.

a = a1e1 + a2e2

b = b1e1 + b2e2

ab = (a1e1 + a2e2)(b1e1 + b2e2)

ab = a1b1 + a2b2e2e2 + a1b2e1e2 + a2b1e2e1

ab = a1b1 + a2b2 + (a1b2 − a2b1)e1e2

ba = (b1e1 + b2e2)(a1e1 + a2e2)

ba = a1b1 + a2b2 + (b1a2 − b2a1)e1e2
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And then,

ab + ba = 2a1b1 + 2a2b2 = 2(a1b1 + a2b2)

⇒
1

2
(ab + ba) = a1b1 + a2b2 = 〈ab〉0 = a · b

ab − ba = 2a1b2e1e2 − 2a2b1e1e2 = 2(a1b2 − a2b1)e1e2

⇒
1

2
(ab − ba) = (a1b2 − a2b1)e1e2 = 〈ab〉2 = a ∧ b

This is

a · b =
1

2
(ab + ba) (2)

a ∧ b =
1

2
(ab − ba) (3)

By sum of (2) and (3), we obtain

ab = a · b + a ∧ b (4)

This result express the geometric product of two vectors.
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All the identities of Gibbs vector algebra are contained here. Additionally, note this
interesting feature.

(e1e2)(e1e2) = (e1e2)(−e2e1)

(e1e2)2 = −(e1e2)(e2e1)

(e1e2)2 = −e1(e2e2)e1

(e1e2)2 = −e1e1

(e1e2)2 = −1
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The bivector e1e2 posses the property that its squares is −1, hence it is identical to
the imaginary unity i . It results that geometric product naturally arises the structure
of complex spaces over vectors. To make it clear, let us examine more the Clifford
Algebra over vector space of dimension 2 (C2). Here, the multivectors are

A = a0 + a1e1 + a2e2 + a3e12

With ai ∈ R and adopting e12 := e1e2.

Note that, since the basis of V is {e1, e2} the
dimension of C2(V ) is 22 = 4 and its basis is {1, e1, e2, e12}. A multiplication table is
shown below.

1 e1 e2 e12

1 1 e1 e2 e12

e1 e1 1 e12 e2

e2 e2 −e12 1 −e1

e12 e12 −e2 e1 -1

Elements of C2 are sum of elements of R, R2, in fact, it is the direct sum.

C2 = R⊕ R2 ⊕
∧2

R2
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As well, note that every multivector could be reordered and be expressed as the sum of
its even parts and its odd parts

A = A0 + A1 + A2 + · · ·+ An = (A0 + A2 + · · ·An) + (A1 + A3 + · · ·An−1)

And, then, becomes clear that any geometric algebra could be written as the direct
sum of the even sublagebra and odd sublagebra

C(V ) = C+(V )⊕ C−(V )

In the specific case of C2 we have

G(+)
2 = R⊕

∧2
R2

G(−)
2 = R2

So, elements of C(+)
2 are of the form a1 + a2e12. Thus, C(+)

2 ' C, i.e., they are
isomorphic. Having C as a subalgebra of C2 make us realize the powerful of the
geometric product. If we look for GA over vector space of dimension 1 we, in fact, get
C for which the even subalgebra is R. This natural expression of the language of
algebra and vectors makes GA a suitable theory to write physics. Actually, Clifford
Algebra over V of dimension 4 results in what is called Space Time Algebra or Dirac
Algebra, which even subalgebra is the Pauli Algebra, and which correspondent even
subalgebra is H (quaternion space).
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As the differential operator. Considering

∂ · F = ei · ∂iF ∂ ∧ F = ei ∧ ∂iF

In similar way made previously, for vector valued function we end with

∂F = ∂F + ∂ ∧ F

This is an expression for the derivative of F that allow us to write in very beautiful way
some equations.
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For example, define the multivectors in C4

F = E + iB J = ρ+ J

F is a bivector of the electromagnetic field and J is the sum of the charge density ρ
and the current density J. Setting this, we can write Maxwell Equations as

Maxwell Equations

∂F = J

This is

∂F = ∂F + ∂ ∧ F = J
∂ · F = J ∂ ∧ F = 0

Now, express F in its basis. For brevity let us adopt the Einstein summation
convention is this calculus

∂ · F = γµ∂µ · Fµνγµγν = ∂µFµνγν = Jνγν

∂ ∧ F = i(∂ × F ) = ∂ × iF = γµ∂µFµνγµγν = ∂µFµνγν = 0

We recognize this as the Maxwell Equation in tensorial form.
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Now let us explore the Cl.A. associated to the vector space Rn
(q)
⊕ Rn

(p)
. This is with

the intention to set a basis {q̂i}ni=1 that span Rn
(q)

and {p̂i}ni=1 that span Rn
(p)

. We

regard q =
n∑

i=1

qi q̂i as the position and p =
n∑

i=1

pi p̂i as the momentum.

Now,

introduce the bivector

ω =
n∑

k=1

ωk =
n∑

k=1

q̂k ∧ p̂k = q̂ ∧ p̂

This induce a map

ω̃ : Rn
(q) ⊕ Rn

(p) → R

x 7→ x̃ = x · ω

x̃ = x · ω = x · (q̂ ∧ p̂) = (x · q̂)p̂ − (x · p̂)q̂

But x = qq̂ + pp̂

x̃ = ((qq̂ + pp̂) · q̂)p̂ − ((qq̂ + pp̂) · p̂)q̂

x̃ = qp̂ − pq̂

If we do this with the derivative operator we obtain

ω̃(∂) = ∂̃ = p̂∂q − q̂∂p
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And express Hamilton equations as

Hamilton equations

∂̃H = ẋ

With a quick calculus we return to classical expression

(p̂∂q − q̂∂p)H = ṗp̂ + q̇q̂

∂qH = ṗ − ∂pH = q̇
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Geometric Aspects

Recall that endow a space with a bilinear form allow us to give geometrical sense such
as distance, lenght, angles, etc. For example, R2 endowed with a symmetric and
positive definite bilinear form is the Euclidean Plane.

Now, consider two vector spaces
V and W . Define a bilinear function by

B : V ×W → K
(x , y) 7→ B(x , y)

Associated, we have

Bx : V → K
x 7→ B(x , y)

By : W → K
y 7→ B(x , y)
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Geometric Aspects

Recall that endow a space with a bilinear form allow us to give geometrical sense such
as distance, lenght, angles, etc. For example, R2 endowed with a symmetric and
positive definite bilinear form is the Euclidean Plane. Now, consider two vector spaces
V and W . Define a bilinear function by

B : V ×W → K
(x , y) 7→ B(x , y)

Associated, we have

Bx : V → K
x 7→ B(x , y)

By : W → K
y 7→ B(x , y)



XII Taller de la División de Gravitación y F́ısica Matemáticas. Noviembre 4-8, 2019

Clearly, Bx ∈ V ∗ and By ∈W ∗.

Now, define

γ : V →W ∗
x 7→ By

function

δ : W → V ∗
y 7→ Bx

So, kerγ ≡W ′ ⊂ V and kerδ ≡ V ′ ⊂W . V ′ and W ′ are called the conjugated of V
and W , respectively. Given this, we say that B is non-degenerate if W ′ = V ′ = {0}
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Now, let’s assume V = W . The choices of B which lead to V ′ = W ′ are the same to
take B(x , y) = 0 equivalent with B(y , x) = 0 for all (x , y) ∈ V × V . This holds
whenever B is neither symmetric or antisymmetric.

Proposition

If ∀(x , y) ∈ V × V , B(x , y) = 0 ⇔ B(y , x) = 0, then B must be symmetric or
antisymmetric.

You can find a proof of this proposition in [2].
If B is symmetric the resulting geometry is called orthogonal. If it is antisymmetric,
the geometry is called symplectic. In the orthogonal case, B(x , x) is written Q(x).
Actually, Q is the quadratic form associated to B, and they are related by

2B(x , y) = Q(x + y)− Q(x)− Q(y)
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Actually, with the quadratic form we can redefine the inner and exterior product
previously presented.

First, define

Definition

For a x = {xi}ni=1 ∈ Rn, we define its reverse as
x̆ = {xn+1−i}ni=1 = {xn, xn−1, · · · , x1}

So,

A · B :=
1

2
[Q(A + B)− Q(A)− Q(B)]

A ∧ B :=
1

2
[Q(A + B̆)− Q(A)− Q(B)]
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For R2, with Q = x2
1 + x2

2 we can easily do

a · b =
1

2
[Q(a + b)− Q(a)− Q(b)]

a · b =
1

2
[(a1 + b1)2 + (a2 + b2)2 − (a2

1 + a2
2)− (b2

1 + b2
2)]

a · b =
1

2
[2a1b1 + 2a2b2]

⇒ a · b =
1

2
[ab + ba]

a ∧ b =
1

2
[Q(a + b̆)− Q(a)− Q(b)]

a ∧ b =
1

2
[(a1 + b2)2 + (a2 + b1)2 − (a2

1 + a2
2)− (b2

1 + b2
2)]

a ∧ b =
1

2
[2a1b2 + 2a2b1]

⇒ a · b =
1

2
[ab − ba]

and establish the Clifford Product again.
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Evidently, Clifford Algebra could be obtained by means of the Tensor Algebra of the
vector space in consideration.

This is achieved by quotient the associate tensor algebra

T (V ) =
∞⊕
k=0

V⊗k with the ideal generated by I = {x ⊗ x − Q(x)|x ∈ V }. We write

G(V ,Q) = T (V )/I

Recalling that x + y ∈ V , it follows (x + y)⊗ (x + y)− Q(x + y) ∈ I

(x + y)⊗ (x + y)− Q(x + y) = x ⊗ x + x ⊗ y + y ⊗ x + y ⊗ y − 2B − Q(x)− Q(y)

= (x ⊗ x − Q(x)) + (y ⊗ y − Q(y)) + x ⊗ y + y ⊗ x − 2B

= x ⊗ y + y ⊗ x − 2B + Ix + Iy

= AB + BA− 2B

Where β := Q(x + y)− Q(x)− Q(y) is the symmetric bilinear form induced by Q.
Thus, we have

AB + BA = 2B (5)
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Is also remarkable that when Q(x)=0 we recover exterior algebra
∧

V .

C(V , 0) =

⊕∞
k=1 V

⊗k

{x ⊗ x |x ∈ V }
=

∧
V

And, here, we can simply write

a ∧ b = a⊗ b − b ⊗ a
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Exterior and Clifford Algebras

The relation between the Clifford Algebra and the Exterior Algebra is quite
remarkable. For instance, C(V ) carry a Z2 − graduation (superalgebra) and the
exterior algebra has a graduation in Z. Remember that

Definition

An algebra A is graded if it is the direct sum of subspaces A = A1
⊕

A2
⊕
· · · s.t.,

AiAj ⊂ Aj+i , ∀i , j ≥ 0. The elements of Ar are called of degree r.

Definition

A filtration of an algebra is a sequence of subspaces A0 ⊂ A1 ⊂ · · · s.t., AiAj ⊂ Aj+i ,
∀i , j ≥ 0.
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We recognize the Clifford Algebra as a filtered algebra, meaning that we can find the
associated graded algebra, being the Exterior Algebra, as we already shown. As well, a
mapping from the graded algebra to the filtered algebra can be found. In the case of C
and

∧
V the map

q :
∧

V → C

v 7→ q(v)

defined by

q(v1 ∧ v2 ∧ · · · ∧ vk ) =
1

k!

∑
σk

sgn(s)vs(1)vs(2) · · · vs(k) (6)

Where σk is the group of permutations of 1, · · · , k and sgn(s) = ±1 is the parity of
the permutation s.
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The relation between Clifford Algebra and Exterioir Algebra is a good example of what
is called deformation quantization. This technique holds as well in between the
Symmetric Algebra and the Weyl Algebra, another wonderful example. Deformation
quantization is a formalization of the process of canonical quantization made in
physics. When physicist are interested in quantize a theory, what they are doing is
defining a map such that

q : S → Op(H)

It maps smooth functions f : M → R to operators q(f ) : H → H. We require q to
satisfy:

1 R linearity: q(rf + g) = rq(f ) + q(g)

2 Normalization q(1) = 1

3 Hermiticity q(f )∗ = q(f )

4 Dirac’s quantum condition: [q(f ), q(g)] = −i~q(f , g)

5 Irreducibility condition: If {fk}nk=1 is a complete set of observables, then
{q(fk )}nk=1 is a complete set of operators.
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Quantization in mathematics

In the case of Classical Mechanics, you take the algebra of functions of the symplectic
manifold and recover the algebra of operators in a Hilbert space. The product of the
functions in the phase space (so called observables, f ∈ C∞) is defined pointwise,
meaning that is commutative, while the algebra in the hilbert space is, actually,
noncommutative. When quantizing a field, you are taking the correspondent
commutative algebra of functions into a noncommutative one. Nevertheless, this
algebra of functions is close related to the actual geometry underpinning it. We can
extract geometric information from algebraic information, for example, two smooth
manifolds are diffeomorphic if and only if the algebras of smooth real-valued functions
on them are isomorphic; two locally compact Hausdorff spaces are homeomorphic if
and only if their algebras of continuous real-valued functions that vanish at infinity are
isomorphic. In this sense, a quantum mathematical object is geometrical fact in terms
of their associated noncommutative algebra. For example, rouglhy speaking, a space is
locally compact Hausdorff iff its algebra of continuous functions is commutative
C*-algebra algebra. So a ”quantum locally compact Hausdorff space” is the one with
a non-commutative C*-algebra. So, physicaly, quantization acquires meaning and
significance when the scale reaches the size of fundamental particles (even since
nanoscales quantum corrections are relevant), but theoretically, the process in
quantization has more to do with noncommutation.
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Geometric Quantization and Noncommutative Geometry

On this efforts, the process of Geometric Quantization is a formalization of this
notions which is under research and has succes taking the classical mechanics into de
usual quantum mechanics. The process is quite sophisticated but can be achieved.
Another great effort is that of a recent branch of mathematics called Noncommutative
Geometry which try to do this exact thing of aproaching geometry through
noncommutative algebras. Is remarkable to say that there exist a formalization of the
Standard Model by means of this theory, called Noncommutative Standard Model, and
actually can derive the lagrangian of the SM and even has calculations of the mass of
the Higgs Boson.



XII Taller de la División de Gravitación y F́ısica Matemáticas. Noviembre 4-8, 2019

Final Remarks

The process of quantization is well understood in symplectic manifolds, but is painfully
obvius that there is a lot of research to do, for example, if the Riemannian structure
could be quantized, we could be able to find a quantum version of the Einstein’s Field
Equations. Another thing is add to it the spin structure, which of curse the objects in
the universe have, as the dirac equation has shown. So, find a novel object that
supports Riemannian, Spin and Symplectic structures, as well as a process of
quantization could be the next thing to do in physics.
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